Diagonal Based Feature Extraction for Handwritten Alphabets Recognition System using Neural Network
نویسندگان
چکیده
An off-line handwritten alphabetical character recognition system using multilayer feed forward neural network is described in the paper. A new method, called, diagonal based feature extraction is introduced for extracting the features of the handwritten alphabets. Fifty data sets, each containing 26 alphabets written by various people, are used for training the neural network and 570 different handwritten alphabetical characters are used for testing. The proposed recognition system performs quite well yielding higher levels of recognition accuracy compared to the systems employing the conventional horizontal and vertical methods of feature extraction. This system will be suitable for converting handwritten documents into structural text form and recognizing handwritten names.
منابع مشابه
Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملHandwritten Text Recognition System Based onNeural Network
In this paper, we have proposed a novel approach for handwriting recognition system involving segmentation for preprocessing steps and using diagonal based feature extraction technique with neutral network for character recognition. Input is paragraphs of running text, which is preprocessed to segment it into normalized individual words. Further, a diagonal based feature extraction technique is...
متن کاملDiagonal Feature Extraction Based Handwritten Character System Using Neural Network
A handwritten character recognition system using multilayer Feed forward neural network is proposed in this paper. The character data set suitable for recognizing postal addresses contains 38 elements which include 26 alphabets, 10 numerals and 2 symbols. Fifteen different handwritten data sets were used for training the neural network for classification and recognition of the characters. Three...
متن کاملAn Investigation on the Performance of Hybrid Features for Feed Forward Neural Network Based English Handwritten Character Recognition System
Optical Characters Recognition (OCR) is one of the active subjects of research in the field of pattern recognition. The two main stages in the OCR system are feature extraction and classification. In this paper, a new hybrid feature extraction technique and a neural network classifier are proposed for off-line handwritten English character recognition system. The hybrid features are obtained by...
متن کاملOptical Character Recognition Using 26-Point Feature Extraction and ANN
We present in this paper a system of English handwriting recognition based on 26-point feature extraction of the character. Basically an off-line handwritten alphabetical character recognition system using multilayer feed forward neural network has been described in our work. Firstly a new method, called, 26-point feature extraction is introduced for extracting the features of the handwritten a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1103.0365 شماره
صفحات -
تاریخ انتشار 2011